1
Ase) makes it a resource for identification, as well as preclinical targeting, of novel mediators of glioma invasion. Galectin-1 was identified in this manner, and has proven in vitro and in vivo to be important in the migration and invasion of glioblastoma cells. Previous work suggests an even greater role of galectin-1 in GBM neoangiogenesis, chemo- and radioresistence, and immune privilege. Tar
1
Ed by the current ones, highlight a major role for galectin-1 in GBM invasiveness. The characteristic malignant phenotype of glioblastoma extends beyond aggressive invasion. This tumor develops resistance to chemo- and radio-therapy, it promotes neoangiogenesis, and it seems to benefit from immune privilege. Interestingly, galectin-1 may play a role in promoting each of these phenotypes. While gal
1
Radial migration assay was performed as previously described [30,31]. In a blinded fashion, various U87Gal-1 clones were analyzed and compared to U87GFP controls and parental U87MG cells. Of each clone, 2500 cells were allowed to sediment through a cooled manifold onto laminin-coated cell culture wells (Creative Scientific Methods, Inc., Phoenix, AZ). The manifold and slide were incubated together
1
File1: Figure S1. Galectin-1 staining correlates with patient survival. Using a tissue microarray created at Mayo Clinic, we stained glioblastoma samples from 34 separate patients using immunohistochemistry for galectin-1. A survival analysis revealed a trend towards shorter survival in those patients harboring galectin-1 positive tumors. Abbreviations ATCC: American type culture collection; ECM:
1
Activation of ERK with induction of apoptosis by various chemopreventive and chemotherapeutic agents [39-41]. In fact, oxidants have been shown to activate ERK by taking over the growth factor receptor signaling pathways [42-46]. Moreover, ERK may get activated in response to DNA damage and can phosphorylate p53 in vitro [23,24,47-49]. We found that exposure of Capan-2 or BxPC-3 cells with apoptos
1
By the ample amount of normal mouse brain tissue available for dissection. In spite of species differences, cross-hybridization of mouse genetic material to human probes did prove to be a common occurrence. These data made it possible to control, rather stringently, for the potential contamination of tumor edge samples with mouse brain. Of course, there could still be possible contamination ?react
1
Ble cross-hybridizing host genes. The use of our animal model to identify mediators of glioma invasion has the potential pitfall of identifying artifacts of xenografting. That is, human glioma cells confronted with nude mouse brain rather than human brain may express genes specific to this setting. Two arguments can be made against this theory. First, there is no teleological reason for human cell
1
Man T lymphocytes. J Immunol 1998, 161:2114?119. 47. Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, Mordoh J, Fainboim L, Podhajcer OL, Rabinovich GA: Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cellmediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 2004, 5:241?51. 48. Kuppner MC, Hamou MF, Sawamura

Social Bookmarking Sites
What is Kliqqi?

Kliqqi is an open source content management system that lets you easily create your own user-powered website.

Latest Comments

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-98700619-1', 'auto'); ga('send', 'pageview');